Note

Structure of the capsular polysaccharide (K19 antigen) from uropathogenic Escherichia coli O25:K19:H12

BARBARA JANN, RALPH AHRENS, THOMAS DENGLER, AND KLAUS JANN*

Max-Planck-Institut für Immunbiologie, D-7800 Freiburg (F.R.G)

(Received October 21st, 1987; accepted for publication, December 14th, 1987)

Uropathogenic *Escherichia coli* are usually encapsulated with acidic polysaccharides (K antigens^{1,2}), many of which contain 3-deoxy-D-manno-2-octulosonic acid (KDO) as the acidic component, frequently together with one or two ribose moieties in the (di- or tri-saccharide) repeating unit³⁻¹⁰. The K13, K20, and K23 polysaccharides contain β -KDO $p^{5,7}$, the K6 polysaccharide α -KDO p^3 , and the K74 and K95 polysaccharides β -KDO $p^{9,10}$. Thus, KDO-ribose polysaccharides form a group of closely related, yet serologically distinct, capsular antigens, the variability being increased by different degrees of *O*-acetylation at various sites. We now report on the structure of the K19 antigen, another KDO-ribose-type polysaccharide.

The K19 polysaccharide, obtained^{5,11} (92 mg/L) from liquid cultures of *E coli* E47a (O25:K19:H12) by precipitation with cetyltrimethylammonium bromide (Cetavlon), extraction with aqueous CaCl₂, precipitation with ethanol, and extraction with cold phenol (pH 6.8), had $[\alpha]_D^{25} + 4.8^{\circ}$ (c 0.1, water) and consisted of ribose, KDO, and OAc in the ratios 1:1:0.35.

Periodate oxidation, followed by borohydride reduction, converted $\sim 40\%$ of the KDO into a 3-deoxy-2-heptulosonic acid (p.e., $M_{\rm KDO}$ 1.1)⁴, the ribose being unchanged. Periodate oxidation/borohydride reduction of the *O*-deacetylated K19 polysaccharide (K19d) converted all of the KDO into 3-deoxy-2-heptulosonic acid.

Methylation of the K19 polysaccharide (Hakomori^{12,13}), followed by hydrolysis (aqueous 90% formic acid, 2 h, 100°; then with 0.125m sulfuric acid, 2 h, 100°), borohydride reduction, and acetylation, gave 1,3,4-tri-O-acetyl-2,5-di-O-methylribitol as determined by g.l.c. (ECNSS-M, 140°) and m.s. This finding indicated the presence of a 3-linked ribofuranoside moiety.

Hydrolysis (1% acetic acid, 30 min, 100°) of the K19 polysaccharide gave a disaccharide (1) which, on chromatography on Biogel P-2, had K_d 0.9 and, in paper

^{*}Author for correspondence.

electrophoresis (Schleicher and Schüll paper 2043a, pH 5.4, 42 V/cm, 90 min), had $M_{\rm KDO}$ 0.75. Methylation of 1, using potassium methylsulfinylmethanide¹⁴, gave a product, g.l.c. (SE 54, 5 min at 150°, then 5°/min to 300°) of which revealed four components each with a mol. wt. of 482 (c.i.-m.s.). An additional minor component with a mol. wt. of 436 was presumably a methylated disaccharide containing anhydro KDO¹⁵ and was not studied further. The products with mol. wt. 482 had similar e.i.-mass spectra, indicative of methyl α - and β -glycosides of methylated 1 with either KDOp or KDOf. The fact that methylated 1 occurred with KDOp and KDOf indicated that, in 1 (and thus also in the K19 polysaccharide), either C-5 or C-6 of KDO is involved in ring formation. This inference, together with the fact that KDO in the polysaccharide could be oxidised with sodium metaperiodate between C-7 and C-8, indicated the KDO to be 4-linked.

The 13 C-n.m.r. spectra of the native (K19) and O-deacetylated (K19d) poly-saccharides were compared with those of the O-deacetylated K13 polysaccharide [K13d; repeating unit, \rightarrow 3)- β -Rib-(1 \rightarrow 7)- β -KDOp-(2 \rightarrow]⁵ the O-deacetylated K95 polysaccharide [K95d; repeating unit, \rightarrow 3)- β -Rib-(1 \rightarrow 8)- β -KDOp-(2 \rightarrow]¹⁰, 2-O-Me-[β -Rib-(1 \rightarrow 7)]- β -KDOp (2)¹⁶, and 2-O-Me-[β -Rib-(1 \rightarrow 7)]- α -KDOp (3)¹⁶. The signal assignments and the results of the attached proton test (APT)^{17,18} with K19 and K19d are given in Table I. The latter spin technique differentiates between CH₃ and CH = (positive signals) and CH₂ and C= (negative signals). The signal at δ 33.1 was

TABLE I

	Atom	Κ19 δ ΑΡΤ ⁶	K19d δ APT	K13d δ	K95d δ	2 δ	$\frac{3}{\delta}$
KDO	C-1	174.2(-)	173.8(-)	174.2	176,5	174.4	176.1
	C-2	102.6(-)	102.4(~)	102.8	110.0	102.1	101.3
	C-3	33.1(-)	33.1(~)	35.6	45.1	35.3	35.0
	C-4	75.6(+)	75.8(+)	68.4	73.3	68.2	66.7
	C-5	65.8(+)	65.8(+)	66.4	87.2	66.0	
	C-6		` '		71.1		66.8
		74.8(+)	74.9(+)	73.5		72.9	70.5
	C-7	69.9(+)	70.1(+)	76.1	71.6	75.4	75.3
	<i>~</i> °	68.1(+)	CC 1/)	(2.4	***O *	60.0	-0 -
	C-8	65.1(-) 67.2(-)	65.1(-)	63.6	70.1	60.8	59.6
Ribose	C-1	106.8(+)	106.9(+)	105.7	108.6	105.8	106.0
	C-2	75.1(+)	75.2(+)	74.9	75.5	75.7	75.7
	C-3	74.4(+)	74.6(+)	74.9	75.5	71.2	71.0
	C-4	82.1(+)	82.2(+)	82.4	82.5	83.5	83.4
	C-5	62.6(-)	62.6(-)	61.1	63.9	63.2	62.7

[&]quot;For the K19 polysaccharide before (K19) and after O-deacetylation [K19d, \rightarrow 3)-β-Ribf-(1 \rightarrow 4)-β-KDOp-(2 \rightarrow], the O-deacetylated K13 polysaccharide [K13d, \rightarrow 3)-β-Rib-(1 \rightarrow 7)-β-KDOp-(2 \rightarrow]⁵, the O-deacetylated K95 polysaccharide [K95d, \rightarrow 3)-β-Rib-(1 \rightarrow 8)-β-KDOf-(2 \rightarrow]¹⁰, 2-O-Mc-[β-Rib-(1 \rightarrow 7)-β-KDO] (2)¹⁶, and 2-O-Me-[β-Rib-(1 \rightarrow 7)-α-KDO] (3). The signs of the signals in the APT 17,18 are given in brackets.

due to C-3 of KDOp, in contrast with δ 45.1 for K95d (8-substituted KDOf) and δ 45.1 for K74 (6-substituted KDOf)⁹, and was at lower field than those of K13d (δ 35.6), 2 (δ 35.3), 3 (δ 35.0), the K12 antigen (δ 36.2)⁴, and the K14 antigen (δ 36.4)⁶. This indicated a β shift on C-3 due to substitution at C-4 of KDO, which was corroborated by an α shift of C-4 (δ 75.6 vs. 68.4 for K13d, δ 68.2 for 2, and δ 66.7 for 3).

The C-3 signal of ribose (δ 74.4 for K19, δ 74.6 for K19d), compared to δ 71.2 for 2 and δ 71.0 for 3, indicated 3-substitution. The ¹³C-n.m.r. data are in agreement with those of methylation.

The 13 C-n.m.r. spectrum of K19 contained two signals more (δ 68.1 and 67.2) than that of K19d. The signal at δ 67.2 (negative in APT) was assigned to C-8 of KDO with an α shift (2.1 p.p.m.) due to partial O-acetylation; likewise, the signal at δ 68.1 (positive in APT) was assigned to C-7 of KDO with a β shift (-1.1 p.p.m.). The OAc groups of the K19 polysaccharide (0.35 per repeating unit) are therefore located at C-8 of 35% of the KDO units.

The ¹H-n.m.r. spectrum of K19d indicated KDO to be β , as evidenced by the signals of H-3a (δ 2.56) and H-3e (δ 1.9)¹⁹. The β configuration was also evidenced by a positive Cotton effect $(\text{mol}^{-1}.\text{cm}^{-1})^{20,21}$ at 217 nm ($\Delta\epsilon$ + 0.47), which agrees well with the value for 2-O-Me- β -KDO ($\Delta\epsilon$ + 0.13)²² and for β -KDO in the K13 polysaccharide ($\Delta\epsilon$ + 0.49)⁵ and is opposite to that for 2-O-Me- α -KDO ($\Delta\epsilon$ - 66)²².

Based on the foregoing results, the structure of the K19 polysaccharide is proposed as \rightarrow 3)- β -Ribf-(1 \rightarrow 4)- β -KDOp-(2 \rightarrow with OAc groups at C-8 of about one-third of the KDO residues. This structure is similar to that [\rightarrow 3)- β -Ribf-(1 \rightarrow 7)- β -KDOp-(2 \rightarrow] of the K13 polysaccharide⁵, which has OAc groups at C-5 of about one-third of the KDO residues. Similar structural variations have been detected in about ten KDO-containing polysaccharides, and it would be of interest to translate the different primary structures into three-dimensional molecular structures.

EXPERIMENTAL

Bacteria and cultivation. — E. coli E74a (O25:K19:H12), obtained from Drs. I. and F. Ørskov (Copenhagen), was grown to the late logarithmic phase in a fermenter in 10-L batches, which contained per L: $K_2HPO_4\cdot 3H_2O$ (9.7 g), K_2PO_4 (2 g), sodium citrate \cdot 5H₂O (0.5 g), MgSO₄·7H₂O (0.1 g), casamino acids (20 g), ammonium acetate (20 g), D-glucose (2 g), and the dialysable part of yeast (100 mL from 500 g in 5 L of deionised water).

Isolation and purification of the capsular polysaccharide. — The acidic capsular polysaccharide together with the bacterial cells were precipitated from the liquid culture by the addition of 1 vol. of aqueous 2% cetyltrimethylammonium bromide (Cetavlon). All the following operations were carried out at 4°. The polysaccharide was extracted from the precipitate with M calcium chloride, and purified by three cycles of precipitation from aqueous solution with ethanol (80% final concentration) followed by repeated extractions with cold phenol (80%, buffered to pH

6.7 with sodium acetate) 5,11 . The combined aqueous phases were centrifuged for 4 h 105,000 g and the supernatant solution was lyophilised.

Analytical methods. — KDO was determined, after hydrolysis (0.1M trifluoroacetic acid, 10 min, 100°), by the thiobarbituric acid assay²³. Ribose was determined, after hydrolysis (M H₂SO₄, 2 h, 100°), by g.l.c. of the alditol acetate on ECNSS-M and with the orcinol reagent. Acetate was determined by g.l.c. on Poropak QS²⁴ and also by ¹H- and ¹³C-n.m.r. spectroscopy of the polysaccharide. Highvoltage paper electrophoresis was run on Schleicher and Schüll 2043a paper (pH 5.3, 4.2 V/cm, 90 min). G.l.c. was performed with a Varian aerograph Series 1400 instrument, equipped with an autolinear temperature programmer and a Hewlett-Packard 3380 integrator, and g.l.c.-m.s. was performed with a Finnigan MAT 1020B automatic system at 70eV on a CB CP SIL 5 (25m \times 0.25 mm) column, using helium as the carrier gas. C.i.-m.s. was done with ammonia as the reactant gas. N.m.r. spectra were recorded with a Bruker WM 300 spectrometer in the F.t. mode at 70° (1 H) and 33° (13 C) [external sodium 4,4-dimethyl-4-sila-(2,2,3,3- 2 H₄)pentanoate]. The chemical shifts of the 13 C resonances were corrected (-1.31 p.p.m.) by using 1,4-dioxane (δ 67.4, based on Me₄Si). Optical rotations were measured with a Perkin-Elmer 141 polarimeter.

Periodate oxidation, reduction with sodium borohydride or sodium borodeuteride, O-deacetylation, as well as methylation^{12,14} have been described^{4,5,9,10}.

ACKNOWLEDGMENTS

We thank Professor J. Rosenbusch (Biozentrum Basel) for access to the c.d. spectrometer, H. Kochanowski for the n.m.r. spectra, and D. Borowiak for the mass spectra.

REFERENCES

- 1 I. ØRSKOV, F. ØRSKOV, B. JANN, AND K. JANN, Bacteriol. Rev., 41 (1977) 667-710.
- 2 K. Jann and B. Jann, Progr. Allergy, 33 (1983) 53-79.
- 3 H. J. Jennings, K. G. Rosell, and K. G. Johnson, Carbohydr. Res., 105 (1982) 45-56.
- 4 M. A. SCHMIDT AND K. JANN, Eur. J. Biochem., 31 (1983) 509-517.
- 5 W. F. VANN AND K. JANN, Infect. Immun., 25 (1979) 85-92.
- 6 B. Jann, P. Hofmann, and K. Jann, Carbohydr. Res., 120 (1983) 131-141.
- 7 W. F. Vann, personal communication.
- 8 W. F. VANN, T. SODERSTROM, W. EGAN, F. P. TSIU, R. SCHNEERSON, AND I. Ørskov, Infect. Immun., 39 (1982) 623-629.
- 9 R. Ahrens, B. Jann, K. Jann, and H. Brade, Carbohydr. Res., in press.
- 10 T. Dengler, B. Jann, and K. Jann, Carbohydr. Res., 142 (1985) 269-276.
- 11 E. C. GOTSCHLICH, M. REY, C. ETIENNE, W. R. SANDBORN, R. TRIAUS, AND B. CVEJANOVIC, *Progr. Immunbiol. Stand.*, 39 (1972) 485-491.
- 12 S.-I. HAKOMORI, J. Biochem. (Tokyo), 55 (1964) 205-208.
- 13 K. RESKE AND K. JANN, Eur. J. Biochem., 31 (1972) 320-328.
- 14 K. R. PHILLIPS AND B. A. FRAZER, Carbohydr. Res., 90 (1981) 381-411.
- 15 P. A. McNicholas, M. Batley, and J. W. Redmond, Carbohydr. Res., 165 (1987) 17-22.
- 16 A. Neszmelyi, U. Kosma, R. Christian, G. Schulz, and F. M. Unger, Carbohydr. Res., 139 (1985) 13-22.

- 17 S. L. PATT, J. Magn. Reson., 46 (1982) 535-539.
- 18 R. BENN AND H. GÜNTHER, Angew. Chem., 95 (1983) 381-411.
- 19 A. K. BHATTACHARJEE, H. J. JENNINGS, AND C. P. KENNY, Biochemistry, 17 (1978) 645-651.
- 20 G. SNATZKE, Angew. Chem., 91 (1979) 380-388.
- 21 D. CHARON, L. SZABO, M. CESARIO, AND J. GUILHAM, J. Chem. Soc., Perkin. Trans. 1, (1982) 3055-3063.
- 22 H. J. JENNINGS, R. ROY, AND R. E. WILLIAMS, Carbohydr. Res., 129 (1984) 243-255.
- 23 V. S. VARAVDEKAR AND L. D. SASLAW, J. Biol. Chem., 234 (1959) 1945-1950.
- 24 I. FROMME AND H. BEILHARZ, Anal. Biochem., 74 (1978) 347-353.